

Processing solutions for Rare Earth Elements

Erik Larsen & Hanumantha Rao Kota

Department of Geoscience and Petroleum Norwegian University of Science and Technology (NTNU) NO-7491 TRONDHEIM, Norway

Laboratories - Processing Pilot mineral processing hall Flotation Hydrometallurgy Urban Mining Micronization Dry separation Crushing Sieving Cleanroom

Laboratories - Analysis Surface Analysis Particle Analysis Chemical-Mineralogical Microscopy Electron Microscopy Sample preparation

Background

REE are strategic and critical for green-tech and high-tech applications (i.e. magnets, batteries, fuel cells, catalysts, alloys, medicine, biological tracers, water purification, soil remediation, light-/optics-/screen-tech, ceramics, glasses,..)

- The "Raw materials initiative" has identified 30 critical raw materials (incl. REE)
- REE-related industry accounts direct/indirect for 10 million jobs in Europe
- No primary REE mineral production in Europe
- EU is increasingly dependent on raw material imports
- 98% REE import from China comes at a cost of economic security and sustainable production (e.g. illegal REE mining)
- Assumed 700% and 2600% increase in the need for Nd and Dy (next 20 years)
- Europe's largest deposit is in Norway

EURARE

-> Fen alone can cover Europe's need for: La, Ce, Pr, Nd (+Dy, Sm, Gd, Eu,..?)

Source: http://www.eurare.eu/

Placer
 Other

- A REE mineral deposit may contain ca. 0.1-10% REE minerals and ca. 90-99.9% gangue minerals (e.g. carbonates, silicates, oxides, phosphates, sulphides, sulfates, fluorides, etc.)
- Each REE mineral may contain several lattice-bound REE

Mineral group	Mineral	Formula	REE	% REE
Silicates	Allanite	(Ca,Sr,REE)2(Al,Fe,Mn,Mg)3Si3O12(OH)	Ce, La, Nd, Y, Pr,	18-31
Phosphates	Monazite	(REE)PO4	Ce, La, Nd, Sm, Gd,	45-56
Carbonates	Bastnäsite	(REE)CO3F	Ce, La, Nd,	64-65
Carbonates	Parisite	Ca(REE)2(CO3)3F2	Ce, La, Nd,	52-53

- A primary REE mineral concentrate is normally a mixture of REE minerals with a total REE content of 30-60% (concentrate purities may be in the range of 50-90%)
- The primary mineral concentrate contains a mixture of various REE
- Balance between grade, recovery, remaining gangue mineralogy, and subsequent processing

NTNU

REE metal production (simplified..)

Challenges

- □ Lack of investment in mapping and mineral processing, lack of R&D, diverse and lengthy national permission procedures, low social acceptance
- □ Complex ore mineralogies and challenging fine particle processing
- Environmental concerns towards the most efficient conventional flotation chemicals
- Chemicals consumption and environmental and cost concerns regarding chemical treatment (hydrometallurgical operations) – enormous number of stages (may be >1000 for advanced SX operations only)
- Recycling cover a small portion of the demand (market growth and long retention times) and should be significantly more environmentally friendly

- □ Higher grade REE mineral concentrates with reduced amounts of gangue carbonate, silicate, fluoride and iron-containing minerals
- Improved mineral liberation and less production of fines in comminution operations
- Increased attention to the use of tailings as byproducts and the treatment of tailings
- Higher selectivity (e.g. solvents with higher separation factors and easier stripping) and capacity in hydrometallurgical REE separation (i.e. reducing number of stages from several hundreds)
- Converting to a regime of green surfactants in flotation and hydrometallurgical operations (i.e. biodegradable, non-toxic, recyclable) will reduce environmental impact

The race for REE ion separation

- Solvent extraction (SX): conventional method, low selectivity, generate large amounts of waste, high capex and opex research on membrane technology, precipitative stripping, solvents (easier stripping, better separation factor, ionic liquids)
- RapidSX: reduced number of processing steps per SX stage, faster kinetics («weeks -> days/hours»),reduced reagent and power consumption, existing shelf-ware equipment the next benchmark for competing technologies? (Innovation Metals Corp)
- □ Ion exchange (IX): abandoned for large scale operations?
- **Free flow electrophoresis (FFE):** no organic solvent, lower capex (Geomega & FFE Service)
- □ **High pressure liquid chromatography (HPLC):** "new and game changing process", environmentally friendly, high efficiency and competitive cost (REEtec)
- Molecular recognition technology (MRT): column «filtration» through beds of solid phase large particles (SuperLig), high selectivity based on multiple parameters, rapid adsorption kinetics, high loading capacity, environmentally friendly, few stages (IBC Advanced Technologies)
- □ Electrowinning (EW): "environmentally benign and economically sustainable process", new acid digestion and novel separation and purification process (Rare Earth Salts & Battelle Memorial Institute)
- Other? (e.g. solid phase extraction, bacterial, vacuum metallurgy, foam flotation..)
 - Several promising and potential game changing methods/applications
 - Need to verify real capex, opex and environmental impact (compared to RapidSX, not SX?)

Solvent extraction vs Foam flotation

Attributes	Solvent extraction	Foam flotation	
Number of stages	50-1000	?	
Kinetics of recovery of REE	Very slow (1-2 hrs/stage), molecular diffusion-limited	Fast (2 min- 1hr), macroscopic mass transport by foams	
Separation of individual REEs	Yes	Yes	
Toxic solvents/reagents	Acute/high (organic solvents with toxic chelating groups)	Low (air as extracting solvent and green surfactant (non-toxic, better recyclability))	
Recyclability of solvents and reagents (organic as well as water)	Medium (expensive to re-process high volumes of used-solvent before recycling)	High (used surfactants and water are easily recoverable due to 2-phases only)	
Use of corrosive chemicals	Very high (acidic medium needed for downstream extraction)	Low	
Water consumption	Very high (large number of stages)	Low (less number of stages, easy to reuse and recycle)	
Energy consumption	Medium	Low	
Environmental overhead (post- treatment and waste disposal)	Very high	Low	
Efficiency at low REE concentration	Low	High	

- □ High voltage pulse fragmentation (HVPF): better liberation along mineral boundaries and less fines
- Electronics recycling: environmentally friendly feeds for subsequent physical separation, flotation, pyro-/hydrometallurgical operations
- □ **Pyrometallurgy:** pre-treatment for subsequent physical separation, flotation, pyro-/hydrometallurgical operations
- **Froth flotation:** fine particle flotation with green chemicals
- □ **Foam flotation:** ion and nanoparticle flotation with green surfactants

- Recovery of REE from a magmatic microcline-quartz pegmatite in southern Norway» (2012-2018)
- Process mineralogy of Norwegian REE deposits (2016-2019)
- Green foam-based methods of mineral and ion separation» (2019-2020)
- □ «Foam flotation of rare earth elements by conventional and green surfactants» (2019-2020)
- Nanomorphology effects on the bioactivity and chemical activity of metal oxides, sulphides, and silicates (2018-2022)
- New Reflux Flotation Cell Technology Upscaling for Ore Flotation (2021-2024)
- HARARE hydrogen as the reducing agent in the recovery of metals and minerals from metallurgical waste
- GEM Green extraction of minerals, metals and rare earth elements (international partnerships for excellent education, research and innovation)
- GREEN Green reagents for sustainable processing of primary and secondary raw materials
- **G** FenREEs A sustainable approach from REE ore to REE oxide based on material from the Fen Complex

Norwegian University of Science and Technology

- Surfactants from renewable sources or bioprocesses
- Biodegradable, non-toxic, better recyclability
- Bulky headgroups that complex REE (higher solubility, higher tolerance to high ionic strength)
- Green surfactants have been employed for remediation of heavy metal contaminated soils, and show promising results in froth flotation

Se <u>Håkon F</u>	Toward sustainable recove aparation of CeO ₂ , La ₂ O ₃ , and Fe ₂ O lavskjold, ¹ Garima Jain, ² Hiyaka Dhar, ¹ Helga E ^{1/} Irpepartment of Geoscie	ery of Rare Earth Elemer a nanoparticles using biosurfac rtesvåg;² Irina Chernyshova, and Hanuman ne and Periodem. Jitti	nts tants tha Rao Kota ¹	20
Lettrad	² Department of Biotechnol Characterization techniques (Characterization (Characteriz		ELSEVIER	Minerals Engineering 158 (2020) 106585 Contents lists available at ScienceDirect Minerals Engineering journal homepage: www.elsevier.com/locate/mineng
Graphical abstract [Will make]		Foam flotation of rare earth elements by conventional and green surfactants Sharath Shetty ^a , Irina V. Chernyshova ^{b,*} , Sathish Ponnurangam ^{a,*} * Chemical and Perroleum Engineering. University of Calgary. Alberta, Canada * Department of Geoscience and Petroleum, Norwegian University of Science and Technology (NTNU), NO-70331 Trondheim, Norwege ARTICLEINFO ABSTRACT		
particle in these studies result. Beaution, any products of or each results is the hardwork to be determined by the studies of the studies of the studies of the determined of the studies of the studies of the studies of the hardwork of the studies of the st	reaction of the second se	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	Krywords: Lanthanides Ion flotation Precipitate flotation Green chemistry Lanthanum Cerium Gadolinium Ytterbium Mineral processing Mineral separation Hydrometallurgy	Foam (ion and precipitate) flotation is a promising green method of recovery of rare earth elements (REE) from leachates of the primary and secondary resources. However, the capabilities of foam flotation in solutions si- mulating real leachates are currently poorly understood, especially for green surfactants as collectors. In this work, we report the results of foam flotation of La(III), Ce(III), Gd(III), Gd(IIII), Gd(III), Gd(

A holistic and sustainable approach from REE ore to REE oxide based on material from the Fen Complex, and the use of innovative and non-conventional methods in a non-linear value chain

erik.larsen@ntnu.no